TOHNICHI power torque tools tighten screws accurately when they are used correctly.

■ Calculating the compressor capacity.

The compressor capacity necessary to drive a power torque tool can be determined by the volume of air required to tighten each screw ($\mathrm{m}^{3} /$ piece) and the number of screws requiring tightening (piece/h). Provide some allowance, however, for leakage and future system expansion.

$$
\begin{aligned}
& \text { Volume of air }=\text { Volume of air required to } \times \text { Number of screws to } \times \text { Thread ratio } \times \frac{1}{60} \\
& \text { consumption tighten each screw be tightened } \\
& \text { [m³/min] } \\
& \text { [m³/piece] } \\
& \text { [Piece/h] } \\
& \text { [Thread/10] }
\end{aligned}
$$

Volume of air required to tighten each screw : Volume of air (standard air) necessary for tightening one screw (number of threads tightened $=10$). Values are given in the specification column for each tool.
Number of screws to be tightened : Number of screws to be tightened per hour.
Thread ratio: The number of threads to be tightened divided by 10 , the standard number of threads.
For example, when the number of threads is 6 , the ratio is 0.6 .

Example:

When four thousand M5 screws (number of threads: eight) are to be tightened using several U500CN tools. (volume of air required to tighten each screw: 0.0031 [m³/piece])

Volume of air consumption $=0.0031 \times 4000 \times 0.8 \times \frac{1}{60}\left[\mathrm{~m}^{3} / \mathrm{min}\right]$
$=0.165\left[\mathrm{~m}^{3} / \mathrm{min}\right]$
Compressor output $\quad=0.165 \times 6.5[\mathrm{~kW}]$
$=1.07[\mathrm{~kW}]$
(The motor output necessary for the compressor to discharge $1[\mathrm{~N}]$ is $6.5[\mathrm{~kW}]$ at a gauge pressure of 0.7 [MPa])

Cost of tightening power $=0.0031 \times 4$ [yen/piece]
$=0.0124$ [yen/piece]
(Cost of compressed air is 4 [yen/piece] at a gauge pressure of 0.7 [MPa], including the costs of electricity, compressor depreciation, etc.)

